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Abstract
We construct a new geometrical framework for Yang–Mills Lagrangian field
theories as an appropriate quotient space of the standard first jet-bundle and
investigate the geometrical properties of the resulting mathematical setting.
We deduce the field equations from a variational problem formulated through
a regular Poincaré–Cartan form, thus ensuring the kinematical admissibility of
critical sections. We state a generalized Nöther theorem and explicitly consider
the case of the free Yang–Mills field.

PACS numbers: 12.10.−g, 12.15.−y, 11.30.−j
Mathematics Subject Classification: 58E15, 70S05, 70S10, 81T13

1. Introduction

The main idea of this work arises from the observation that, in many fields of interest, it is
possible to describe the dynamical variables of a Lagrangian theory in terms of forms.

As for Yang–Mills fields, for example, one can interpret the dynamical field A as a
connection of a suitable principal fibre bundle and the strength field F as its curvature. In this
formalism, symmetry and invariance properties play an important role which has been widely
investigated in the literature also from a geometrical viewpoint [1–6].

The possibility of using forms to describe fields is, however, not only limited to Yang–
Mills fields. Also gravitational fields and classical continuum mechanics, for example, may
be described in such a way [7, 8].

In this paper, we construct a new geometrical framework, namely a new bundle, by
changing the standard definition of jet-equivalence. The resulting formalism is more suitable
to describe Lagrangian field theories depending on the derivatives of the field, only by means
of the antisymmetric part of the gradient.

In such a way, the ‘inessential’ coordinates are cut away from the geometrical construction,
since its origin, thus achieving two main goals: firstly, the gauge transformations act in a very
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simple way on the ‘derivatives’ of the dynamical field A (namely in a pure tensorial way) and,
secondly, the standard Yang–Mills Lagrangian becomes regular. Explicitly, we observe that
the Lagrangian

L = − 1
4F

µ

ikF
ik
µ

is regular, in the sense that there are no longer vertical vector fields belonging to the kernel of
its second derivative matrix.

The structure of the paper is as follows. In section 2, we construct the new ‘jet-bundle’
J (E) and we study its geometrical properties in detail. More precisely, we define suitable
contact 2-forms characterizing the sections which are J -extensions; we introduce the notion
of J -prolongability for bundle automorphisms and vector fields and study its relationships
with contact forms, trying to extend some classical result of the standard jet-bundle theory to
this formalism.

In section 3, we construct the Poincaré–Cartan form �̃L in J (E) and we deduce the field
equations from a variational principle, built through �̃L on the new space. As we shall see,
this variational principle directly furnishes the kinematical admissibility of critical sections
as a consequence of the acquired regularity properties of the Yang–Mills Lagrangian. In this
connection, we shall introduce a particular choice of local coordinates which are adapted to
the structure of the connection and the curvature fields. Doing so, we are able to perform
calculations in a very simple form.

In section 4, we shall briefly investigate the relationships between symmetries, Nöther
theorem and conserved currents [10–12] in the newer scheme.

Finally, in section 5, we propose an explicit example by considering the free Yang–
Mills Lagrangian in Minkowski spacetime. The previously developed geometrical framework
is applied, gauge and spacetime symmetries are considered and the standard stress–energy
tensor is obtained.

2. The geometrical framework

Yang–Mills theories may be geometrically described by using a principal fibre bundle P → M ,
with structural group G and base manifold M generally taken to be the spacetime.

The principal connections of P → M represent the dynamical fields and their pullbacks
through local sections of P → M represent the Yang–Mills fields.

Locally, the physical fields may be regarded as 1-form on open sets U ⊂ M with values
in G, the Lie algebra of G and, therefore, they are local sections of E := T �M ⊗ G → M .

Referring E to local coordinates xi, a
µ

i , i = 1, . . . , m = dim M,µ = 1, . . . , r = dim G,
physical fields are then locally described as

x → a
µ

i (x) dxi |x ⊗ eµ (2.1)

eµ being a given basis of G.
In the present paper we focus our attention on a local analysis of the theory, supposing

a (local) trivialization of P is fixed once and for all. We remark that this choice is not a real
restriction since the changes of the local trivialization give rise to unphysical changes of the
Yang–Mills fields represented by gauge transformations, in turn recovered as (local) active
automorphisms of E.

A global approach to the formalism proposed here is also possible and its detailed
development is the main argument of a forthcoming paper [9], where all the present geometrical
constructions will be built on the usual connection bundle j1(P,M)/G → M .

According to these arguments, we shall work directly on the space E. To start with, we
denote by j1(E) the first jet-bundle associated with the fibration E → M and refer it to local
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jet-coordinates xi, a
µ

i , a
µ

ij . Up to a change of basis in G, the above jet-coordinates undergo the
transformation laws

x̄i = x̄i (xj ) ā
µ

i = a
µ

j

∂xj

∂x̄i
ā

µ

ij = a
µ

ks

∂xk

∂x̄i

∂xs

∂x̄j
+ a

µ

h

∂2xh

∂x̄i∂x̄j
. (2.2)

Let us define in j1(E) the following equivalence relation: given z1 = (
xi, a

µ

i , a
µ

ij

)
, z2 =(

xi, a
µ

i , â
µ

ij

) ∈ j1(E), both fibred on the same point e = (
xi, a

µ

i

) ∈ E, we say that z1 ∼ z2 ⇔(
a

µ

ij −a
µ

ji

) = (
â

µ

ij − â
µ

ji

)
. Transformation laws (2.2) ensure that the above equivalence relation

is independent of the choice of coordinates, being(
ā

µ

ij − ā
µ

ji

) = (
a

µ

ks − a
µ

sk

)∂xk

∂x̄i

∂xs

∂x̄j
. (2.3)

Geometrically speaking, the introduced equivalence relation means that if σ1 and σ2 are two
sections representing z1 and z2 respectively, then z1 ∼ z2 ⇔ dσ1|π(z1) = dσ2|π(z2), π :
j1(E) → M indicating the natural projection.

Then, we define the quotient space J (E) := j1(E)/∼. The main difference of the vector
bundle J (E) with respect to j1(E) is the fact that the first-order contact condition between
sections is calculated using the exterior differential, since sections are 1-forms.

J (E) may be endowed with a set of local coordinates xi, a
µ

i , Ã
µ

ij := 1
2

(
a

µ

ij −a
µ

ji

)
(i < j).

Transformation laws (2.2), (2.3) imply the identification

J (E) � (T ∗M ⊗ G) ×M (�2(T ∗M) ⊗ G) (2.4)

as well as the natural immersion

i : J (E) → (T ∗M ⊗ G) ×M ((T ∗M ⊗ T ∗M) ⊗ G). (2.5)

Referring (T ∗M ⊗ G) ×M ((T ∗M ⊗ T ∗M) ⊗ G) to local coordinates xi, a
µ

i , A
µ

ij (∀ i, j =
1, . . . , m) the submanifold J (E) is locally described as A

µ

ij = −A
µ

ji .
Alternatively, the manifold J (E) may be constructed using the distribution D formed

by the totality of vertical vectors V σ
pq

∂
∂aσ

pq
on j1(E), symmetric in the indices p and q, i.e.

satisfying the condition V σ
pq = V σ

qp. In fact, D is involutive and the leaf space j1(E)/D of the
foliation generated by D identifies with the manifold J (E) introduced above.

As a further remark, we note that the space J (E) may be put in relation with the semi-
holonomic bundle [13] associated with the principal fibre bundle P → M .4 This fact allows
us also to build a global approach which is not one of the aims of the current paper.

Now, we shall see that some fundamental geometrical structures and constructions of the
first jet-bundle j1(E) may be naturally extended to the newly defined manifold J (E).

2.1. J -extension of sections

Given a section σ : M → E, locally expressed as x → (
xi, a

µ

i (x)
)
, we define its first

J -extension as J σ := ρ ◦ j1σ , according to the commutative diagram

j1(E)
ρ−−−−→ J (E)

j1σ

� �J σ

M M

(2.6)

ρ indicating the canonical quotient projection and j1σ denoting the standard first jet-extension
of σ .
4 We wish to thank Professor M Modugno for a useful discussion on this point.
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Any section γ : M → J (E) will be called holonomic if and only if there exists a
section σ : M → E such that γ = J σ . In local coordinates, a section γ of the form

x → (
xi, a

µ

i (x), Ã
µ

ij (x)
)

is holonomic if and only if Ã
µ

ij (x) = 1
2

( ∂a
µ

i (x)

∂xj − ∂a
µ

j (x)

∂xi

)
.

2.2. Contact forms

Let us consider the following 2-forms,

θµ := da
µ

j ∧ dxj + 2
∑
i<j

Ã
µ

ij dxi ∧ dxj (2.7)

defined on J (E). It is a straightforward matter to verify that the 2-forms (2.7) are invariant
geometrical objects on J (E), henceforth referred to as contact forms. The latter allow us to
characterize holonomic sections of the fibration J (E) → M . More precisely, we have the
following:

Proposition 2.1. A section γ : M → J (E) is holonomic if and only if γ ∗(θµ) = 0.

Proof. Given γ : x → (
xi, a

µ

i (x), Ã
µ

ij (x)
)
, for every µ = 1, . . . , r one has

γ ∗(θµ) = γ ∗

da
µ

j ∧ dxj + 2
∑
i<j

Ã
µ

ij dxi ∧ dxj


=

∑
i<j

[(
∂a

µ

j (x)

∂xi
− ∂a

µ

i (x)

∂xj

)
+ 2Ã

µ

ij (x)

]
dxi ∧ dxj .

From this the conclusion follows. �

2.3. J -prolongation of morphisms

We show how to define a J -prolongation for a suitable family of bundle morphisms of E

E

−−−−→ E

π

� �π

M
χ−−−−→ M

projecting to diffeomorphisms of M.
To this end, we first characterize those bundle morphisms (
, χ) satisfying the

requirement

ρ ◦ j1
(w1) = ρ ◦ j1
(w2) ∀w1, w2 ∈ ρ−1(z) (2.8)

for any z ∈ J (E), j1
 denoting the ordinary jet-prolongation of (
, χ) on j1(E).
To start with, supposing that such a bundle morphism (
, χ) is described by equations{

yi = χi(xj )

bν
i = 
ν

i

(
xj , a

µ

j

) (2.9)

we recall that its jet-prolongation j1
 on j1(E) is expressed as (see, for example, [13])
yi = χi(xj )

bν
i = 
ν

i

(
xj , a

µ

j

)
bν

ij = ( ∂
ν
i

∂xk + a
µ

sk

∂
ν
i

∂a
µ
s

)(
∂(χ−1)k

∂yj ◦ χ
)
.
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Condition (2.8) is then mathematically equivalent to requiring that the quantities

1

2

(
bν

ij − bν
ji

) = 1

2

[(
∂
ν

i

∂xk
+ a

µ

sk

∂
ν
i

∂a
µ
s

)
∂xk

∂yj
−

(
∂
ν

j

∂xk
+ a

µ

sk

∂
ν
j

∂a
µ
s

)
∂xk

∂yi

]
(2.10)

depend on antisymmetric combinations of a
µ

sk only. This is the case if and only if the
expressions (

a
µ

sk + a
µ

ks

)∂
ν
i

∂a
µ
s

∂xk

∂yj
− (

a
µ

sk + a
µ

ks

)∂
ν
j

∂a
µ
s

∂xk

∂yi

vanish identically. In view of the generality of
(
a

µ

sk + a
µ

ks

)
, this last fact leads to the following

equations,

∂
ν
i

∂a
µ
s

∂xk

∂yj
+

∂
ν
i

∂a
µ

k

∂xs

∂yj
− ∂
ν

j

∂a
µ
s

∂xk

∂yi
− ∂
ν

j

∂a
µ

k

∂xs

∂yi
= 0 (2.11)

which the bundle morphism (
, χ) has to satisfy. In order to solve equations (2.11), let us
saturate the indices i and k by ∂yi

∂xk , so obtaining new equations

∂
ν
i

∂a
µ

k

∂xs

∂yj

∂yi

∂xk
− m

∂
ν
j

∂a
µ
s

= 0. (2.12)

Once again, saturating equations (2.12) by ∂yj

∂xr , we get the relations

∂
ν
i

∂a
µ

k

∂yi

∂xk
δs
r = m

∂
ν
j

∂a
µ
s

∂yj

∂xr
(2.13)

from which we deduce
∂
ν

j

∂a
µ
s

∂yj

∂xr
= 0 if s �= r (2.14a)

and

∂
ν
j

∂a
µ
s

∂yj

∂xs
= 1

m

m∑
k=1

∂
ν
j

∂a
µ

k

∂yj

∂xk
:= �ν

µ(x, a) ∀ s (index s not repeated). (2.14b)

We may then rewrite equations (2.13) in the form

∂
ν
i

∂a
µ
r

∂yi

∂xs
= �ν

µδr
s ⇔ ∂
ν

i

∂a
µ
r

= �ν
µ

∂xr

∂yi
. (2.15)

Moreover, from equations (2.14a) we have

0 = ∂

∂a
γ
s

(
∂
ν

i

∂a
µ
r

∂yi

∂xs

)
= ∂2
ν

i

∂a
γ
s ∂a

µ
r

∂yi

∂xs
= ∂

∂a
µ
r

(
∂
ν

i

∂a
γ
s

∂yi

∂xs

)
= ∂�ν

γ

∂a
µ
r

∀ ν, γ, µ, r

showing that the functions �ν
µ are (pullback of ) functions on M, namely �ν

µ = �ν
µ(x). In view

of this, we may solve directly equations (2.15) so getting the final expressions


ν
i = �ν

µ(x)
∂xr

∂yi
aµ

r + f ν
i (x) (2.16)

where the functions f ν
i (x) ∈ F(M) are arbitrary integration terms. Equations (2.16) give the

necessary conditions for a bundle morphism (
, χ) to satisfy requirement (2.8). Conversely,
through a straightforward calculation it is easily seen that the bundle morphisms (2.16) obey
the ansatz (2.8). The conclusion follows that equations (2.16) describe the more general
bundle morphism (
, χ) satisfying (2.8).
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For every such bundle morphism (
, χ) of E, we may then define the map J
 : J (E) →
J (E) expressed as

J
(z) := ρ ◦ j1
(w) ∀w ∈ ρ−1(z), z ∈ J (E) (2.17)

according to the commutative diagram

j1(E)
j1
−−−−→ j1(E)

ρ

� �ρ

J (E)
J
−−−−→ J (E)

We shall call the map J
 the J -prolongation of (
, χ). If the latter is represented by
equations (2.9) and (2.16), the explicit expression of J
 is easily deduced from
equations (2.10) and it is given by

yi = χi(xk)

bν
i = �ν

µ(x) ∂xr

∂yi a
µ
r + f ν

i (x)

D̃ν
ij = �ν

µÃ
µ

ks
∂xk

∂yi

∂xs

∂yj + 1
2

[ ∂�ν
µ

∂xk

(
∂xk

∂yj

∂xr

∂yi − ∂xk

∂yi

∂xr

∂yj

)
a

µ
r + ∂f ν

i

∂xk

∂xk

∂yj − ∂f ν
j

∂xk

∂xk

∂yi

] (2.18)

where we have used the notation Ã
µ

ks = −Ã
µ

sk—henceforth systematically adopted—whenever
k > s.

Useful characterizations of J -prolongations, similar to those existing for standard jet-
prolongations on j1(E), are given by the following:

Proposition 2.2. A bundle automorphism (�, χ) of J (E) → M satisfies �∗(η) ∈
Span{θσ , σ = 1, . . . , r} ∀ η ∈ Span{θσ , σ = 1, . . . , r} ⇔ � = J
 for some bundle
automorphism (
, χ) of E → M .

Proof. Given (�, χ) of the form
yi = χi(xk)

bν
i = 
ν

i

(
xk, a

µ

k , Ã
µ

kh

)
D̃ν

ij = �ν
ij

(
xk, a

µ

k , Ã
µ

kh

) (2.19)

directly from equation (2.7) we have

�∗(θν) =
(

∂
ν
i

∂xk

∂yi

∂xs
+ D̃ν

ij

∂yi

∂xk

∂yj

∂xs

)
dxk ∧ dxs +

∂
ν
i

∂aσ
k

∂yi

∂xs
daσ

k ∧ dxs

+
∑
p<q

∂
ν
i

∂Ãσ
pq

∂yi

∂xs
dÃσ

pq ∧ dxs.

By imposing the requirement �∗(θν) = �ν
σ

(
daσ

k ∧ dxk + Ãσ
ks dxk ∧ dxs

)
we get the conditions

∂
ν
i

∂Ãσ
pq

= 0 (2.20a)

∂
ν
i

∂aσ
k

∂yi

∂xs
= �ν

σ δk
s (2.20b)

D̃ν
ij = �ν

σ Ãσ
ks

∂xk

∂yi

∂xs

∂yj
− 1

2

(
∂
ν

j

∂xk

∂xk

∂yi
− ∂
ν

i

∂xk

∂xk

∂yj

)
. (2.20c)
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From equations (2.20a) we deduce that (�, χ) projects to an automorphism (
, χ) of
E → M . More in particular, since equations (2.20b) are identical to the already solved
equations (2.15), we derive the explicit expression for the ‘vertical’ part of (
, χ) given by

ν

i (x, a) = �ν
µ(x) ∂xr

∂yi a
µ
r + f ν

i (x). This means that (
, χ) is J -prolongable and, under this
circumstance, comparison of equations (2.20c) with equations (2.18) shows that � = J
.

Conversely, it is a straightforward matter to check that J -prolongations preserve contact
forms. �

Proposition 2.3. Given a bundle automorphism (�, χ) of J (E) → M , one has � ◦J σ ◦χ−1

is a J -extension for every section σ : E → M ⇔ � = J
 for some bundle automorphism
(
, χ) of E → M .

Proof. (⇐) If � = J
, then in view of propositions 2.1 and 2.2 we have (J
 ◦ J σ ◦
χ−1)∗ (θµ) = χ−1∗ ◦ J σ ∗ ◦ J
∗(θµ) = 0 ∀µ = 1, . . . , r; so, still due to proposition 2.2,
� ◦ J σ ◦ χ−1 is a J -extension.

(⇒) Let (�, χ) be of the form (2.19) and let σ(x) = (
xi, σ

µ

i (x)
)

be a local section of
E → M , defined on a open set U ⊂ M . By imposing � ◦ J σ ◦ χ−1 = J γ for some section
γ (y) = (

yi, γ
µ

i (y)
)

defined on V = χ(U), we get the relations

γ
µ

i (y) = 

µ

i

(
xh(y), σ ν

h (x(y)),
1

2

(
∂σ ν

h

∂xk
(x(y)) − ∂σ ν

k

∂xh
(x(y))

))
1

2

(
∂γ

µ

i

∂yj
(y) − ∂γ

µ

j

∂yi
(y)

)
= �

µ

ij

(
xh(y), σ ν

h (x(y)),
1

2

(
∂σ ν

h

∂xk
(x(y)) − ∂σ ν

k

∂xh
(x(y))

))
.

From these, by a direct calculation we end up with the equations

1

2

[
∂


µ

i

∂xh

∂xh

∂yj
+

∂

µ

i

∂aν
h

∂σ ν
h

∂xq

∂xq

∂yj
+

∑
h<k

∂

µ

i

∂Ãν
hk

1

2

(
∂2σ ν

h

∂xq∂xk
(x(y))

− ∂2σ ν
k

∂xq∂xh
(x(y))

)
∂xq

∂yj
− ∂


µ

j

∂xh

∂xh

∂yi
− ∂


µ

j

∂aν
h

∂σ ν
h

∂xq

∂xq

∂yi

−
∑
h<k

∂

µ

j

∂Ãν
hk

1

2

(
∂2σ ν

h

∂xq∂xk
(x(y)) − ∂2σ ν

k

∂xq∂xh
(x(y))

)
∂xq

∂yi

]

= �
µ

ij

(
xh(y), σ ν

h (x(y)),
1

2

(
∂σ ν

h

∂xk
(x(y)) − ∂σ ν

k

∂xh
(x(y))

))
. (2.21)

Now, let σ̂ (x) = (
xi, σ̂ ν

i (x)
)

be a second section satisfying the conditions ∂σ ν
i

∂xj (x̃) = ∂σ̂ ν
i

∂xj (x̃)

and ∂2σ̂ ν
i

∂xh∂xk (x̃) = 0 at a given x̃ ∈ U . In ỹ = χ(x̃) we have then

�
µ

ij (J σ(x̃(ỹ))) = �
µ

ij (J σ̂ (x̃(ỹ))).

Hence, taking equations (2.21) into account, by subtraction we derive the further equations∑
h<k

∂

µ

i

∂Ãν
hk

1

2

(
∂2σ ν

h

∂xq∂xk
(x̃(ỹ)) − ∂2σ

µ

k

∂xq∂xh
(x̃(ỹ))

)
∂xq

∂yj
(ỹ)

−
∑
h<k

∂

µ

j

∂Ãν
hk

1

2

(
∂2σ ν

h

∂xq∂xk
(x̃(ỹ)) − ∂2σ ν

k

∂xq∂xh
(x̃(ỹ))

)
∂xq

∂yi
(ỹ) = 0. (2.22)

By choosing sections σ such that
( ∂2σν

h

∂xq∂xk (x̃(ỹ)) − ∂2σν
k

∂xq∂xh (x̃(ỹ))
)

∂xq

∂yj (ỹ) = δr
hδ

k
s δ

ν
λδ

j
p,

equation (2.22) implies
∂


µ

i

∂Ãλ
rs

(J σ(x̃)) = 0. (2.23)
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Due to the arbitrariness of σ , equations (2.23) ensure that 

µ

i

(
xj , aν

j

) ∈ F(E), namely that
(�, χ) is fibred over a bundle morphism (
, χ) of E → M . Finally, by a comparison of
equations (2.21) with equations (2.10), we conclude that equations (2.21) define a bundle
morphism of J (E) → M if and only if (
, χ) is J -prolongable; in this circumstance, still
equations (2.21) imply � = J
. �

2.4. J -prolongation of vector fields

The above stated results allow us to define a J -prolongation for certain vector fields on E
projecting to M.

To start with, let X ∈ D1(E) be a vector field such that, for each value of the ‘time’
parameter, its flow is composed of J -prolongable bundle automorphisms of E → M .
The J -prolongations of these automorphisms yield a flow on J (E); the latter may then
be differentiated with respect to the parameter, thus providing a vector field J (X) on J (E).
Taking equation (2.16) into account, it is easily seen that every such a vector field X necessarily
needs to be of the form

X = εi(xj )
∂

∂xi
+

(
− ∂εk

∂xq
a

µ

k + Dµ
ν (xj )aν

q + Gµ
q (xj )

)
∂

∂a
µ
q

(2.24)

where εi(x) = d
dt

χ i
∣∣
t=0,D

µ
ν (x) = d

dt
�µ

ν

∣∣
t=0,G

µ
q (x) = d

dt
f µ

ν

∣∣
t=0 are arbitrary functions on M.

Moreover, by differentiating equation (2.18) we end up with the local expression

J (X) = εi(xj )
∂

∂xi
+

(
− ∂εk

∂xq
a

µ

k + Dµ
ν (xj )aν

q + Gµ
q (xj )

)
∂

∂a
µ
q

+
∑
i<j

h̃
µ

ij

∂

∂Ã
µ

ij

(2.25a)

where

h̃
µ

ij = 1

2

(
∂Dµ

ν

∂xj
aν

i − ∂Dµ
ν

∂xi
aν

j +
∂G

µ

i

∂xj
− ∂G

µ

j

∂xi

)
+ Dµ

ν Ãν
ij +

(
Ã

µ

ki

∂εk

∂xj
− Ã

µ

kj

∂εk

∂xi

)
. (2.25b)

The above described procedure corresponds essentially to take the standard first jet-
prolongation j1(X) and to project it on J (E) according to the ansatz

J (X)(ζ ) := ρ∗ρ−1(ζ )(j1(X)) ∀ ζ ∈ J (E). (2.26)

The stated assumption on the flow of the vector fields (2.24) ensures that the whole operation
is well defined.

In this connection, one could ask which are the most general vector fields X on E, projecting
to M, whose first jet-prolongations j1(X) on j1(E) pass to the quotient, thus admitting
J -prolongations defined without ambiguity by equation (2.26). As it is well known, a
necessary and sufficient condition for this to happen is that the requirement

[V, j1(X)] ∈ D ∀V ∈ D (2.27)

holds. Once again, D denotes the distribution formed by the totality of vertical vectors V σ
pq

∂
∂aσ

pq

on j1(E), satisfying the condition V σ
pq = V σ

qp. In this respect, in the appendix we show that
condition (2.27) is satisfied by vector fields (2.24) only.

As happens for standard jet-prolongations in ordinary jet-bundles [13], vector fields (2.25)
are characterized by preserving contact forms. More specifically, we have the following:

Proposition 2.4. Let π : J (E) → E denote the natural projection. Given a vector field Y
on J (E), projectable on E, such that its projection X(e) := π∗π−1(e)(Y ) (∀ e ∈ E) defines a
vector field on E of the form (2.24), then

Y = J (X) ⇔ LY θµ ∈ Span{θσ , σ = 1, . . . , r}.
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Proof. (⇐) First of all, the immersion (2.5) allows us to represent the contact forms θµ

as the pullbacks θµ = i∗(θ̂µ), θ̂µ := da
µ

i ∧ dxi + A
µ

ij dxi ∧ dxj being invariant 2-forms on
(T ∗M ⊗ G) ×M ((T ∗M ⊗ T ∗M) ⊗ G). We also note that the pullback i∗ is an isomorphism
between semibasic (with respect to the fibration over E) forms on J (E) and semibasic forms
on i(J (E)) ⊂ (T ∗M ⊗G)×M ((T ∗M ⊗T ∗M)⊗G). Therefore, the Lie derivative LY θµ may
be more easily performed working on (T ∗M ⊗G) ×M ((T ∗M ⊗ T ∗M) ⊗G) and pulling back
all the results on J (E) at the end. More precisely, given a vector field Y as in the hypothesis,
let us consider any vector field Ŷ = εi(xj ) ∂

∂xi +
(− ∂εk

∂xq a
µ

k + Dµ
ν (xj )aν

q + G
µ
q (xj )

)
∂

∂a
µ
q

+ h
µ

ij
∂

∂A
µ

ij

defined on a neighbourhood of i(J (E)) and i∗-related to Y: we have then LY θµ = i∗(LŶ θ̂µ).
In view of this, by a direct calculation it is easily seen that the condition i∗(LŶ θ̂µ) ∈ Span{θσ ,

σ = 1, . . . , r} is mathematically equivalent to the equations

LY θµ = Dµ
ν θν (2.28a)

and

h
µ

ij +
1

2

(
∂Dµ

ν

∂xi
aν

j − ∂Dµ
ν

∂xj
aν

i +
∂G

µ

j

∂xi
− ∂G

µ

i

∂xj

)
+

(
A

µ

kj

∂εk

∂xi
− A

µ

ki

∂εk

∂xj

)
= Dµ

ν Aν
ij . (2.28b)

Comparison with equation (2.25) shows that the only solutions of equations (2.28) are the
J -prolongations (2.25).

(⇒) It follows directly from proposition 2.2. �

As a consequence we have

Corollary 2.1. The J -prolongations (2.26) form a Lie algebra.

Proof. It is a direct consequence of the well-known property of the Lie derivative

L[J (X),J (Y )]θ
µ = LJ (X)LJ (Y )θ

µ − LJ (Y )LJ (X)θ
µ

and of the fact that the vector fields (2.24) form a Lie algebra. �

3. Poincaré–Cartan form and field equations

The aim of this section is to deduce the evolution equations for Yang–Mills theories from a
variational principle built on J (E).

The first step in this direction is to define a suitable Poincaré–Cartan m-form on J (E).
To this end, let

L = L
(
xi, a

µ

i , a
µ

ij

)
ds (3.1)

be a Yang–Mills Lagrangian, with ds := dx1 ∧· · ·∧dxm. We recall that the usual Yang–Mills
Lagrangian

L = − 1
4F

µ

ij F ij
µ

√
g ds (3.2)

(with g := |det gij |) depends only on the antisymmetric part of field derivatives and eventually
on non-Abelian terms, not involving field derivatives. Then, we shall consider in the following
only Lagrangian densities satisfying this requirement, namely

L
(
xi, a

µ

i , a
µ

ij

) = L̂
(
xi, a

µ

i , A
µ

ij = 1
2

(
a

µ

ij − a
µ

ji

))
(3.3)

where we think L̂
(
xi, a

µ

i , A
µ

ij

) ∈ F((T ∗M ⊗ G) ×M ((T ∗M ⊗ T ∗M) ⊗ G)).
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We note that, due to the singularity condition

∂2L
∂a

µ

ij ∂aσ
pq

V σ
pq = 0 ⇔ V σ

pq = V σ
qp (3.4)

the variational problem built on j1(E) through the usual Poincaré–Cartan form

�L :=
(
L − ∂L

∂a
µ

ij

a
µ

ij

)
ds +

∂L
∂a

µ

ij

da
µ

i ∧ dsj (3.5)

associated with any Lagrangian (3.1), (3.3) (where dsj := ∂
∂xj ds), is not able to ensure that

its solutions are automatically jet-extensions. Indeed, as is well known, the latter is a condition
which has to be imposed a priori.

The problem may be bypassed working directly on J (E) where, as we shall see, the
kinematic admissibility of the critical sections is granted by the variational problem itself.

To start with, taking equation (3.4) as well as the verticality of the distribution D into
account, one may easily prove the relations

D �L = 0 D d�L = 0. (3.6)

Equations (3.6) ensure that the Poincaré–Cartan form �L passes to the quotient, namely that
there exists an m-form �̃L on J (E) such that �L = ρ∗(�̃L) (see, for example, [14, 15]).

In local coordinates, recalling immersion (2.5) and taking the straightforward identities
∂L
∂a

µ

ij

= 1
2

∂L̂
∂A

µ
pq

δ
ij
pq and ∂L

∂a
µ

ij

a
µ

ij = 1
2

∂L̂
∂A

µ
pq

δ
ij
pqA

µ

ij into account, it is easily seen that �̃L = i∗(θ̂L),

�̂L =
(
L̂ − 1

2

∂L̂
∂A

µ

ij

δ
pq

ij Aµ
pq

)
ds +

1

2

∂L̂
∂A

µ

ij

δ
pq

ij daµ
p ∧ dsq (3.7)

being a suitable m-form on (T ∗M ⊗ G) ×M ((T ∗M ⊗ T ∗M) ⊗ G). Introducing the pullback
L̃ := i∗(L̂), one has the relations ∂L̃

∂Ã
µ

ij

= ∂L̂
∂A

µ

ij

− ∂L̂
∂A

µ

ji

for i < j . Then, setting ∂L̃
∂Ã

µ

ij

:= − ∂L̃
∂Ã

µ

ji

and Ã
µ

ij := −Ã
µ

ji for i > j , directly from equation (3.7) we derive the local expression5

�̃L =
(
L̃ − 1

2

∂L̃
∂Ã

µ

ij

Ã
µ

ij

)
ds +

1

2

∂L̃
∂Ã

µ

ij

da
µ

i ∧ dsj . (3.8)

It is now convenient to introduce new coordinates which are more suitable for the formalism
of connections. To this end, given a connection 1-form aµ(x) = a

µ

i (x) dxi , we recall that its
curvature is defined as

Fµ = 1
2F

µ

ji(x) dxi ∧ dxj = daµ(x) − 1
2aν(x) ∧ aρ(x)Cµ

ρν (3.9)

where Cµ
ρν are the structure coefficients of the Lie algebra G. Equation (3.9) suggests taking

the components of the curvature as coordinates on the fibres of J (E) → E; they are related
to the J -coordinates by the following transformation laws

xi = xi a
µ

i = a
µ

i F
µ

ji = −2Ã
µ

ij − aν
i a

ρ

j Cµ
ρν (i < j). (3.10)

In connection with this, we also define the following forms on J (E):

Fµ := 1
2F

µ

ji dxi ∧ dxj
(
with F

µ

ji := −F
µ

ij if i > j
)

(3.11a)

�
µ

i := da
µ

i + 1
2aν

i C
µ
ρνa

ρ

j dxj (3.11b)

�µ := −dxi ∧ �
µ

i . (3.11c)
5 In equation (3.8) the indices i and j in the summations run from 1 to m.
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As a result, it is easily seen that the Poincaré–Cartan form (3.8) may be rewritten as

�̃L = L̃ ds − 1

2

∂L̃
∂F

µ

ji

F
µ

ji ds − ∂L̃
∂F

µ

ji

�
µ

i ∧ dsj . (3.12)

Moreover, taking the straightforward identities ∂L̃
∂F

µ

ji

F
µ

ji ds = Fµ ∧ ∂L̃
∂F

µ

ji

dsji (with dsji :=
∂

∂xj

∂
∂xi ds), ∂L̃

∂F
µ

ji

�
µ

i ∧ dsj = − 1
2�µ ∧ ∂L̃

∂F
µ

ji

dsji and θµ = �µ − Fµ into account, we get

the final expression

�̃L = L̃ ds + 1
2θµ ∧ Pµ (3.13)

where Pµ := ∂L̃
∂F

µ

ji

dsji .

In what follows, for any compact domain D ⊂ M we shall denote by �D the totality of
sections γ : U ⊂ M → J (E) defined in some open neighbourhood U ⊃ D.

By means of the m-form �̃L we may then introduce a real-valued action functional AD

on �D , expressed as

AD(γ ) :=
∫

D

γ ∗(�̃L). (3.14)

Given a vertical (with respect to the fibration J (E) → M) vector field X = X
µ

i
∂

∂a
µ

i

+∑
i<j X

µ

ji
∂

∂F
µ

ji

on J (E) and a section γ ∈ �D we may construct sections γξ := 
ξ ◦ γ ∈ �D

by dragging γ along the flow 
ξ of X.
The first variation of AD at γ in the direction X is defined as

δAD

δX
(γ ) := d

dξ

∫
D

γ ∗
ξ (�̃L)

∣∣∣∣
ξ=0

=
∫

D

γ ∗(X d�̃L) +
∫

∂D

γ ∗(X �̃L). (3.15)

A section γ : M → J (E) is called critical if δAD

δX
(γ ) = 0 for all compact domains D ⊂ M

and all vertical vector fields vanishing on the boundary ∂D. From equation (3.15), taking
the condition at the boundary into account, it follows that γ (xk) = (

xk, a
µ

i (xk), F
µ

ji(x
k)

)
is

critical if and only if it satisfies the equation

γ ∗(X d�̃L) = 0 ∀X = X
µ

i

∂

∂a
µ

i

+
∑
i<j

X
µ

ji

∂

∂F
µ

ji

X|∂D = 0. (3.16)

It is now convenient to introduce the following local dual bases of TJ (E) and T ∗J (E),
respectively expressed as

D

Dxk
:= ∂

∂xk
+

1

2
aλ

k a
β

i C
µ
βλ

∂

∂a
µ

i

−
∑
r>s

F λ
rsa

ρ

k C
µ
ρλ

∂

∂F
µ
rs

D

Da
µ

i

:= ∂

∂a
µ

i

,
D

DF
µ

ji

:= ∂

∂F
µ

ji

(3.17a)

and

Dxi := dxi, �
µ

i , DF
µ

ji := dF
µ

ji + Fλ
jia

ρC
µ
ρλ (3.17b)

The latter are consistent with the definition of the covariant differential operator D, acting on
tensorial p-forms on J (E) of adjoint and co-adjoint kind, respectively, as

Dηµ = dηµ + (−1)pηλaρC
µ
ρλ (3.18a)

Dηµ = dηµ − (−1)pηλa
ρCλ

ρµ. (3.18b)
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Using these latter and taking the identity ∂L̃
∂F

µ

ji

ds = 1
2 dxi ∧ dxjPµ into account, it is easily

seen that

d� = D� = DL̃
Da

µ

i

�
µ

i ∧ ds +
1

2
θµ ∧ DPµ. (3.19)

Then, given an arbitrary vector field X = b
µ

i
D

Da
µ

i

+
∑

r>s h
µ
rs

D

DF
µ
rs

as in equation (3.16), from
equation (3.19) we have

X d� = X D� = b
µ

i

[
DL̃
Da

µ

i

ds +
1

2
dxi ∧ DPµ

]
+

1

2
θµ ∧

[
bλ

k

D2L
Daλ

k DF
µ

ji

+
∑
r>s

hλ
rs

D2L
DFλ

rsDF
µ

ji

]
dsji . (3.20)

Due to the arbitrariness of X, by imposing the requirement γ ∗(X d�) = 0, we finally obtain
two sets of equations. The first one is given by∑

p<q

γ ∗
(

∂2L̃
∂F

µ

ji∂F σ
qp

)(
2Ãσ

pq(x) − δrs
pq

∂aσ
r (x)

∂xs

)
= 0 ∀ i < j. (3.21a)

If L̃ is a Yang–Mills Lagrangian, then equation (3.21a) ensures that the critical section γ is

holonomic, i.e. Ã
µ

ij (x) = 1
2

( ∂a
µ

i (x)

∂xj − ∂a
µ

j (x)

∂xi

)
.

This last result allows us to write the second set of equations yielded by equation (3.16)
in the form

γ ∗
(

∂L̃
∂a

µ

i

+ Dj

∂L̃
∂F

µ

ji

)
= 0. (3.21b)

The latter are the field equations of the problem we are studying. In this respect it is easy
to verify that equations (3.21b) are exactly the Euler–Lagrange equations induced by the
Lagrangian (3.1).

It is worth noting that the restriction on the verticality of the vector fields X in
equation (3.16) may be removed. In fact, it is a straightforward matter to see that
equation (3.16) implies automatically γ ∗(X d�̃L) = 0 ∀X ∈ D1(J (E)).

4. Symmetries and the Nöther theorem

In this section, we briefly investigate the relationships between symmetries and the Nöther
theorem in the present geometrical framework.

We begin by stating

Definition 4.1. A vector field Z on J (E) is called a generalized infinitesimal Lagrangian
symmetry if it satisfies the requirement

LZ(L̃ ds) = dα (4.1)

for some (m − 1)-form α on J (E).

Of course, equation (4.1) considers the trivial case LZ(L̃ ds) = 0. In such a circumstance, if
Z is projectable to M and (�s, χs) denotes its flow, then the condition LZ(L̃ ds) = 0 locally
reads

L̃ = det

∣∣∣∣∂χi
s

∂xj

∣∣∣∣ L̃ ◦ �s ∀ s (4.2)
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yielding the well-known behaviour of the Lagrangian density L̃ under the action of usual
Lagrangian symmetries.

Also, borrowing from [12], we introduce the following:

Definition 4.2. A vector field Z on J (E) is called a Nöther vector field if it satisfies the
following condition,

LZ�̃L = ω + dα (4.3)

where ω is an m-form belonging to the ideal generated by the forms θσ and α is a generic
(m − 1)-form on J (E).

Once again, equation (4.3) considers the case LZ�̃L = 0. When this happens and, as above,
Z is projectable to M, indicating again by (�s, χs) its flow, it can immediately be seen that
�∗

s ◦ γ ◦ χ∗
−s is a critical section if γ is, namely Z is an infinitesimal dynamical symmetry of

the theory.

Proposition 4.1. If a generalized infinitesimal Lagrangian symmetry Z is a J -prolongation
of some vector field (2.24) on E, then it is a Nöther vector field.

Proof. Given such a Z, recalling the representation (3.13) for the Poincaré–Cartan form �̃L,
we have

LZ(�̃L) = dα + 1
2LZ(θµ) ∧ Pµ + 1

2θµ ∧ LZ(Pµ). (4.4)

Proposition 2.4 ensures that the last two terms on the right-hand side of equation (4.4) belong
to the ideal generated by contact forms. From this the conclusion follows. �

Nöther vector fields allow us to restate in the present geometrical framework a generalized
Nöther theorem associating with every Nöther vector field Z a conserved current E . In fact,
for any Z satisfying equation (4.3) we have

d(Z �̃L − α) = (ω − Z d�̃L). (4.5)

If γ : M → J (E) is a critical section we have

dγ ∗(Z �̃L − α) = γ ∗(ω − Z d�̃L) = 0. (4.6)

As a consequence, denoting by E := γ ∗(Z �̃L − α), we conclude that the Nöther current E
is conserved (on shell), i.e. dE = 0.

Proposition 4.2. If a Nöther vector field Z is a J -prolongation of some vector field (2.24) on
E, then it is an infinitesimal dynamical symmetry.

Proof. Let us denote by (�s, χs) (χs : M → M local diffeomorphisms) the flow of Z
and by γs := �s ◦ γ ◦ χ−1

s the variation of a critical section γ along Z. Since Z is a
J -prolongation, γs are automatically J -extensions. Therefore, the holonomy of any γs being
ensured, we may take first variations with respect to J -prolongations only. Then, let J (X) be
an arbitrary J -prolongation (vertical with respect to the fibration over M ) and let 
ξ denote
its correspondent flow. Without loss of generality, we may assume the deformations of any
γs associated with J (X) to be of the form γξ,s := �s ◦ 
ξ ◦ γ ◦ χ−1

s . We want to prove
δAχs (D)

δJ (X)
(γs) := d

dξ

(
Aχs(D)(γξ,s)

)∣∣
ξ=0 = 0 ∀ s,∀J (X) vanishing at ∂D. To this end we note

that
d

ds

(
δAχs(D)

δJ (X)
(γs)

) ∣∣∣∣
s=s̄

= d

dξ

d

ds
Aχs(D)(γξ,s)

∣∣∣∣
ξ=0,s=s̄

= d

dξ

∫
D

γ ∗ ◦ 
∗
ξ ◦ �∗

s̄ (ω + dα)

∣∣∣∣
ξ=0

= d

dξ

∫
χs(D)

χ∗
−s̄ ◦ γ ∗ ◦ 
∗

ξ ◦ �∗
s̄ (ω)

∣∣∣∣
ξ=0

+
d

dξ

∫
D

γ ∗ ◦ 
∗
ξ d(�∗

s̄ α)

∣∣∣∣
ξ=0

= 0.

(4.7)
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The first integral vanishes because of the holonomy of the sections γξ,s̄ , the second one because
J (X) vanishes on ∂D. Therefore we have

δAχs(D)

δJ (X)
(γs) = δAD

δJ (X)
(γ ) = 0 ∀ s. (4.8)

We conclude that all γs are critical sections and then Z is a dynamical symmetry. �

5. Example

Let us consider the free Yang–Mills Lagrangian6 on the Minkowski spacetime. Using pseudo-
Euclidean coordinates for simplicity, the latter is expressed as

L = L̃(x, a, F ) ds := − 1
4F

µ

ij F ij
µ ds (5.1)

where F
ij
µ := Fν

pqη
piηqj γµν . The associated Poincaré–Cartan form (3.13) assumes the

expression

�̃L = − 1
4F

µ

ij F ij
µ ds − 1

2θµ ∧ F ij
µ dsij . (5.2)

If σ(x) = (
x, a

µ

i (x), F
µ

ji(x)
)

denotes a critical section for the variational problem built
through �̃L, then equations (3.21) imply

F
µ

ji(x) = −∂a
µ

i

∂xj
(x) +

∂a
µ

j

∂xi
(x) − aν

i (x)a
ρ

j (x)Cµ
ρν and DjF

ji
µ (x) = 0. (5.3)

The latter are the well-known Euler–Lagrange equations for the free Yang–Mills field.
Infinitesimal gauge transformations may be represented by vector fields X on E of the

form

X = Dib
µ ∂

∂a
µ

i

(5.4)

where bµ = bµ(x) ∈ F(M) and Dib
µ = ∂bµ

∂xi + bνaσ
i Cµ

σν .
Comparison with equation (2.24) shows that the vector fields (5.4) are J -prolongable.

From equations (2.25), (3.17a) we easily get the representation

J (X) = Dib
µ D

Da
µ

i

+
1

2
bνF

ρ

ijC
µ
ρν

D

DF
µ

ij

(5.5)

for the J -prolongation on J (E) of X.
As is well known, gauge transformations are Lagrangian symmetries. Indeed, in the

present geometrical setting we have the identity

LJ (X)(L̃ ds) = LJ (X)

(− 1
4F

µ

ij F ij
µ ds

) = − 1
2bνF

ρ

ijC
µ
ρνF

ij
µ = 0 (5.6)

the vanishing of (5.6) being due to the relation γµρC
µ
νσ = γµ[ρC

µ

νσ ], a consequence of the
adjoint invariance of the metric γ .

Therefore, from proposition 4.1 it follows that the vector fields (5.5) are Nöther vector
fields and so, in view of proposition 4.2, they are infinitesimal dynamical symmetries of the
theory.

If σ is a critical section, then we have

0 = σ ∗LJ (X)(�̃L) = dσ ∗(J (X) �̃L) (5.7)

6 The extension to interacting Yang–Mills field theories is presently the object of further studies; preliminary results
show that, at least in the case of minimal coupling, the present formalism is perfectly working.
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showing that

E = σ ∗(J (X) �̃L) = σ ∗( 1
2Dbµ ∧ Pµ

) = Dib
µ(x)F ij

µ (x) dsj (5.8)

are the conserved Nöther currents, associated with the fields (5.5).
Another family of Nöther vector fields is obtained by considering lifts to E of Killing

vector fields on M.
More precisely, let K = ξ i ∂

∂xi be a Killing vector field on M. The natural lift to E of K is
given by

Y = ξ i ∂

∂xi
− ∂ξj

∂xi
a

µ

j

∂

∂a
µ

i

. (5.9)

Once again, taking equation (2.24) into account, it is immediately seen that Y isJ -prolongable.
In local coordinates we have the expression

J (Y ) = ξ i ∂

∂xi
− ∂ξj

∂xi
a

µ

j

∂

∂a
µ

i

+
∂ξk

∂xi
F

µ

jk

∂

∂F
µ

ij

. (5.10)

Moreover, it is easy to verify that vector fields (5.10) are infinitesimal Lagrangian symmetries.
Indeed one has

LJ (Y )(L̃ ds) = −∂ξk

∂xi
F

µ

jkF
ij
µ ds +

∂ξk

∂xk
ds = 0 (5.11)

because of the identities ∂ξk

∂xi + ∂ξ i

∂xk = 0.
In view of this, as above we have that every field (5.10) is a Nöther vector field and, as

in the case of infinitesimal gauge transformations, it represents an infinitesimal dynamical
symmetry. From equations (4.3) and (4.6) it follows that the pullback under critical section σ

E = σ ∗(J (Y ) �̃L) (5.12)

is the corresponding conserved current. In more detail, after a straightforward calculation, we
get the expression

J (Y ) �̃L = ξk
(− 1

4F
µ

ij F ij
µ δh

k + F
µ

ikF
ih
µ

)
dsh + d

(
ξka

µ

k F ij
µ dsij

)
− ξka

µ

k D
(
F ij

µ dsij

)
+ 1

2θµ ∧ (J (Y ) Pµ). (5.13)

The last two terms on the right-hand side of equation (5.13) clearly vanish on the critical
section. Then we have

E = ξk(x)
(− 1

4F
µ

ij (x)F ij
µ (x)δh

k + F
µ

ik(x)F ih
µ (x)

)
dsh + d

(
ξk(x)a

µ

k (x)F ij
µ (x) dsij

)
(5.14)

involving, besides the negligible exact term, the stress–energy tensor

T h
k := − 1

4F
µ

ij F ij
µ δh

k + F
µ

ikF
ih
µ (5.15)

Appendix. J -prolongability of vector fields

Given a vector field X on E projecting to M of the form

X = εi(xr)
∂

∂xi
+ b

µ

i

(
xr, aσ

r

) ∂

∂a
µ

i

(A.1)

let us indicate by

j1(X) = εi(xr)
∂

∂xi
+ b

µ

i

(
xr, aσ

r

) ∂

∂a
µ

i

+

(
∂b

µ

i

∂xj
+

∂b
µ

i

∂aν
k

aν
kj − a

µ

ik

∂εk

∂xj

)
∂

∂a
µ

ij
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its first jet-prolongation on J (E). Denoting by V = V
µ

ij
∂

∂a
µ

ij

an arbitrary vector field

belonging to the distribution D, a straightforward calculation shows that condition (2.27)
is mathematically equivalent to requiring that the quantity

V
µ

rk

(
δk
j

∂bν
i

∂a
µ
r

− ∂εk

∂xj
δr
i δ

ν
µ

)
(A.2)

is symmetric in the indices i and j for all V
µ

rk symmetric in the indices r and k; this means
that the [ij ]-skewsymmetric part of expression (A.2) must vanish. This leads to the following
equations:(

δk
j

∂bν
i

∂a
µ
r

− ∂εk

∂xj
δr
i δ

ν
µ

)
+

(
δr
j

∂bν
i

∂a
µ

k

− ∂εr

∂xj
δk
i δ

ν
µ

)
−

(
δk
i

∂bν
j

∂a
µ
r

− ∂εk

∂xi
δr
j δ

ν
µ

)
−

(
δr
i

∂bν
j

∂a
µ

k

− ∂εr

∂xi
δk
j δ

ν
µ

)
= 0.

Saturating the indices j and r we get the differential equations(
δν
µ

∂εr

∂xj
+

∂bν
j

∂a
µ
r

) (
δk
i δ

j
r − mδk

r δ
j

i

) = 0 (A.3)

for the components εi(xr) and b
µ

i

(
xr, aσ

r

)
of X. From equation (A.3) we have the following:

• If k = i, then

δν
µ

∂εk

∂xk
+

∂bν
k

∂a
µ

k

= 1

m

m∑
s=1

(
δν
µ

∂εs

∂xs
+

∂bν
s

∂a
µ
s

)
(index k not repeated). (A.4)

• If k �= i, then

δν
µ

∂εk

∂xi
+

∂bν
i

∂a
µ

k

= 0. (A.5)

From equation (A.5) we deduce that

bν
i = −

(
∂ε1

∂xi
aν

1 +
∂ε2

∂xi
aν

2 + · · · +
∂̂εi

∂xi
aν

i + · · · +
∂εm

∂xi
aν

m

)
+ f ν

i

(
xj , aλ

i

)
(A.6)

where ν and i are fixed and the symbol ̂ denotes the absence of the corresponding term.
Inserting equation (A.6) in equation (A.4) we obtain the following equations,

δν
µ

∂εk

∂xk
+

∂f ν
k

∂a
µ

k

= 1

m

m∑
s=1

(
δν
µ

∂εs

∂xs
+

∂f ν
s

∂a
µ
s

)
for the functions f ν

i . We may single out two different cases:

• If ν = µ, then

∂εk

∂xk
+

∂f ν
k

∂aν
k

= 1

m

m∑
s=1

(
∂εs

∂xs
+

∂f ν
s

∂aν
s

)
. (A.7)

• If ν �= µ, then

∂f ν
k

∂a
µ

k

= 1

m

m∑
s=1

(
∂f ν

s

∂a
µ
s

)
. (A.8)
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Equation (A.8) yields

∂f ν
1

∂a
µ

1

= ∂f ν
2

∂a
µ

2

= · · · = ∂f ν
m

∂a
µ
m

(A.9)

whenever ν �= µ. From equation (A.9), taking second derivatives into account, we get

∂2f ν
i

∂aλ
i ∂a

µ

i

= ∂2f ν
j

∂aλ
i ∂a

µ

j

= 0 (since f ν
j does not depend on aλ

i ∀ λ, i �= j) (A.10)

for µ �= ν and λ �= ν. For the same reason, taking ν = µ and using equation (A.7), we have

∂2f ν
i

∂aλ
i ∂aν

i

= ∂

∂aλ
i

(
− ∂εi

∂xi
+

∂εj

∂xj
+

∂f ν
j

∂aν
j

)
= ∂2f ν

j

∂aλ
i ∂aν

j

= 0. (A.11)

Equations (A.10), (A.11) imply the relations

f ν
i

(
xj , a

µ

i

) = Cν
iµ(xj )a

µ

i + Gν
i (x

j ) (index i not repeated) (A.12)

with Cν
kµ(xj ),Gν

i (x
j ) ∈ F(M).

Inserting equation (A.12) in equations (A.7), (A.8) we obtain that

• if ν �= µ, then

Cν
kµ = 1

m

m∑
s=1

(
Cν

sµ

) ⇒ Dν
µ := Cν

1µ = Cν
2µ = · · · = Cν

mµ

• if ν = µ, then

∂εk

∂xk
+ Cν

kν = 1

m

m∑
s=1

(
∂εs

∂xs
+ Cν

sν

)
⇒ Dν

ν := ∂ε1

∂x1
+ Cν

1ν

= ∂ε2

∂x2
+ Cν

2ν = · · · = ∂εm

∂xm
+ Cν

mν.

Therefore, going back to equation (A.12) we may write

f ν
i =

m∑
µ=1

Dν
µa

µ

i − ∂εi

∂xi
aν

i + Gν
i .

Inserting this last result in equation (A.6), we end up with the expressions

bν
i = −∂εk

∂xi
aν

k + Dν
µa

µ

i + Gν
i .

Finally, collecting all the results, we may state that the vector fields

X = εi(xj )
∂

∂xi
+

(
− ∂εk

∂xq
a

µ

k + Dµ
ν (xj )aν

q + Gµ
q (xj )

)
∂

∂a
µ
q

(A.13)

solve equations (A.3) which is a necessary condition for a vector field X (A.1) on E to satisfy
requirement (2.27).

Conversely, a straightforward check shows that all vector fields (A.13) obey the ansatz
(2.27). We then conclude that they are the only vector fields whose first jet-prolongations pass
to the quotient.
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[4] Göckeler M and Schücker T 1987 Differential Geometry, Gauge Theories and Gravity (New York: Cambridge

University)
[5] Mayer M E 1977 Introduction to the Fiber-Bundle Approach to Gauge Theories (Lecture Notes in Physics

vol 67) (Heidelberg: Springer)
[6] Marathe K B and Martucci G 1992 The Mathematical Foundations of Gauge Theories (Studies in Mathematical

Physics vol 5) (Amsterdam: North-Holland)
[7] Ne’eman Y and Regge T 1978 Gauge theory of gravity and supergravity on a group manifold Riv. Nuovo

Cimento 1 1–45
[8] Abraham R, Marsden J E and Ratiu T 1988 Manifolds, Tensor Analysis, and Applications (New York: Springer)
[9] Cianci R, Vignolo S and Bruno D Geometrical aspects in gauge field theories, in preparation
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